Journal of International Business and Economics December 2019, Vol. 7, No. 2, pp. 154-172 ISSN: 374-2208 (Print), **2374-2194**(Online) Copyright © The Author(s). All Rights Reserved. Published by American Research Institute for Policy Development DOI: 10.15640/jibe.v7n2a16 URL: https://doi.org/10.15640/jibe.v7n2a16

Compare Buy and Hold Strategy with Technical Indicators Strategy on Index Trading with Empirical Studies

LAI, Ping-fu (Brian)¹ & LUI Tsz-hin²

Abstract

This is a quantitative research on the validity of two common trading strategies. One of it is buy and hold strategy. Another one is long and short strategy trading by the signal generated by technical indicators. The aim of this research is to find out the appropriate strategy. Besides, combination of technical indicators is tested in order to find out any difference in performance. Also, this research wants to find out the market different on these strategies. This study is useful for investor to determine his strategy. This study is rare in academic research. The method in this research is back test historical data of nine stock markets. Use statistic analysis to find out any significance different in mean/median of the profit generated by two strategies. It found that buy and hold strategy is better than long and short strategy.

Keywords:Stochastic Oscillator, Average Directional Index, EMH, Exponential Moving Average, MACD,Capital Flow, Lead-Lag Relation, Stock Market

1. Introduction

This paper aims to find out if any extra profit can gain from investing on index by individual or combination of technical indicators compare with buy and hold strategy. In academic field, some researchers attributed the extra profit gain by technical indicators strategy is due to extra risk. Some of them proved that the price is random walk. Efficient market hypotheses (EMH) are dominated in the academic field for many years. One of its model suggested that investors cannot make extra profit by trading according to historical data. This paper can indirectly provide knowledge concerned with the EMH. If trading according to the technical indicator signal can provide extra profit than buy and hold strategy, it proves indirectly that market is inefficient and cannot be classified in any model of EMH.In practical, a lot of traders still use conventional technical analysis (TA) to make trading decision. Besides, newspapers and some investing adviser often use technical indicators as a tool for their investment advice. Indeed, ordinary investor only wants to know the validity of technical indicators. However, academic article compare such strategy with simple buy and hold strategy is rare. This paper want to compare the different of profit by using buy and hold (B&H) strategy against Long and Short (L&S) strategy according to technical indicators. Simple find out the performance of any technical analysis is useless if not compare with bench mark. This research use B&H strategy as benchmark is similar to compare the performance of TA to the performance of market. If the difference between these two strategies is significant, investors should choose the better strategy. This paper is important for investors to choose appropriate investment strategy. Firstly, the purpose of this study was to determine which strategy is better. Secondly, this research want to find out if performance of strategies same in all major market or especially useful in certain market. Finally, this research wants to find out if use of combine signal of indicators has any different when compare with use single indicator. This paper investigates the index of major stock markets. The performance of such index will undergo back test. Such index includes S&P500(SP), Dow Jones Industrial Average(DJ), NASDAQ composite(NA), FTSE 100(FT), DAX(DA), CAC 40(CA), Nikkei 225(NI), Hang Seng (HS) and Shanghai composite index(SS).

¹Associate Professor, College of Global Talents, Beijing Institute of Technology, Zhuhai, China ²Researcher, ABRS International Consultancy, Hong Kong

Such indexes cover all the major market in United States, Europe and Asia. Three commonly used technical indicators will be used to make trading decisions. They are Moving Average Convergence-Divergence (MACD), Average Directional Index (ADX) and Stochastic Oscillator (SO). Besides, trading decision on combination of the above indicators will also be back tested. The returns by using such strategies will used to compare with buy and hold strategy of same period. The rest of the study is structured as follow: First, the literature on EMH and technical analysis will be reviewed. Secondly, the sampling and research method will describe. The result will discuss in following part. Finally, general result, limitation, implication, possible explanation and suggestion for further study are mentioned.

2. Literature Review

The EMH is an important hypothesis in finance research in past twenty years. It is developed by Professor Eugene Fama in the early 1960. Recently, he also shared the 2013 Nobel Prize with other two researchers in Economic Sciences. This hypothesis contradicts the principle of technical analysis. Hence, EMH is discussed in the following part as background knowledge. This hypothesis states that stock prices already represent all the information that affect the prices, investors cannot gain extra profit by this information. EMH states that it is not possible to gain extra profit by predict stock price as prices change according to information that cannot be predicted. In other word, the price of market fully represent available information is called efficient (Fama, 1970). Some researchers point out that the market is weak form. Roberts (1965) and Osborne (1959) thought that US stocks prices did not follow pattern. It means that the US stocks price cannot be predicted by technical analysis. Moreover, Osborne (1959) Granger and Morgenstern (1963) and Fama (1965) failed to found any pattern of US stocks price too. In addition, Fama and Blume (1966) found that if use very small filters; it may produce extra profit than buy-and-hold strategy. However, the transaction cost makes it unprofitable.

On the other hand, some of researches suggest the market is not weak form. That means that the market is not effective. Levy (1967) found that invest on momentum can gain profit. Moreover, Merton (1980) stated that variance change can be figure out from historical information. Furthermore, French (1980) found a weekend patterns in US stocks. In addition, Keim (1983) found a January effect in US stocks. Also, Gultekin and Gultekin (1983) and Jaffe and Westerfield (1985) found seasonal patterns in international markets. Furthermore, Debondt and Thaler (1985) and Lehmann (1990) found reversal effect in US stocks. Jegadeesh and Titman (1993) found momentum effect. Generally, all the above researches show that one can gain extra profit by making investment according to historical information.

Another form of the EMT is semi-strong form. A market is called semi strong form when prices reflected all the public available information. In other words, investors cannot gain extra profit by take a position according to public information. Public available information includes historical prices and all market available information. Some research support the efficiency of semi strong form market. Fama (1969) found that investors cannot get extra return by the stock splits public information. Post and van Vliet (2004) thought that market efficiency is high. However, other researchers found that the market is not efficient. Jaffe (1974) found out that insiders can gain return from open information of insider trading. Besides, Ball (1978), Bernard and Seyhun (1995) also found that it need certain time for public to react to profit making information. Moreover, Basu (1978) found that invest on small (P/E) ratios stocks can gain extra return.

The last form of EMT is called strong form when prices reflect all the public and insider information. Investors cannot gain extra profit by investment according to this information. A lot of researches show that it is incorrect. Investors that have unexecuted limit orders can use this information to gain return (Niederhoffer and Osborne, 1966). Furthermore, Scholes (1969) pointed out that private information about a company is available to people working in that company. In addition, Jaffe (1974) and Seyhun (1986) claimed that insiders can gain extra return. Also, Kiymaz (2002) found that in Turkish stocks extra profit can found in the price change of stocks before public announcement. The validity of EMT is not conclusive. The evidences on weak form and semi strong form are not always supportive. Besides, a lot of researches shown that strong form effective market is not appropriate. The validity of EMT affects the usefulness of technical analysis. If market is either weak form, semi-strong or strong form, technical analysis is not useful. The predicting power of technical analysis should be due to statistical error and/or bias. This paper want to find out the performance of technical indicators compare with buy and hold strategy. If any form of EMH did correct, use of technical indicators to invest on index should not gain any extra benefit from buy and hold strategy. In contrary, if use of any technical indicators provides significant benefit, it means that weak form EMH do not hold.

"Technical analysis" is too general that it is difficult to define. They have common character of analysis based on linear time series modeling of historical data (Black & Scholes, 1973). It is believed that historical price will reflect the trends of price in future. That is contradicting to the weak form efficient market theory. Murphy (2000) suggested that trends can be divided to three categories: uptrend, downtrend and sideways trend. The trend is changing according to the economic, political and psychological attitudes of investors. As a result, it affects the decision of investors. However, there are over hundred or even thousands of technical indicators used by traders all over the world, it is not appropriate to draw conclusion on the validity of technical analysis if only a few methods are scrutinized. A research showed that at least 90 percent of the chief foreign exchange dealers take reference on technical analysis before making trading decision (Taylor and Allen,1992). Besides, a lot of investors in Germany use technical analysis during trading (Menkhoff, 1998). As a consequence, the performance of technical analysis affects a lot of investors. Such performance will discuss in the following sections.

The result found in efficiency of technical analysis is controversy. Some research showed that technical analysis is useful. Technical analysis can make extra profit on the Dow Jones Industrial Average Index (Brock, Lakonishok and LeBaron, 1992). Besides, it is anticipated that 35% of all trading in NYSE is initiated by program trading (Bray, 2002). The trading decision should be initiated by historical data. Neely et al. (1997) and Lebaron (1999) proved net profit by using moving average rules. Similarly, Blume et al. (1994) found that combine the volume and price to make trading decision can gain extra benefit. In addition, Antoniou et al. (1997) also proved that price and volume can predict the future trend in market of Istanbul. Besides, Chan et al. (2000) found that momentum strategies provided profit on international stock index trading. Also, Bessembinder and Chan (1995) found that trading strategy is useful in index return in Asian Stock Markets. Los (2001) found that Asian stock market easily affect by the moving price. Ratner and Leal (1999) also found that moving average rules can gain extra profit in Taiwan and Thailand. However, transactions costs generate by huge amount of trading by technical trading rules reduce the profit (Coutts and Chen, 2000). Besides, Hsu and Kuan (2005) found that simple technical analysis can gain significant profit in market that mainly composed of new companies (Hsu and Kuan, 2005). Change signal of simple moving average rule to nonlinear models successes to provide good predictive power on Dow Jones Average during 1897 to 1988 (Gency,1998). Also, Jegadeesh (1990) also found that invest according to momentum technical analysis can gain extra profit on industry stocks. In addition, the performance of stock have tendency to continue its strong or weak performance over period of 3 months to whole year (Jegadeesh and Titman, 1993). A research found that 52-week highs combine with momentum analysis can gain extra profit on America stocks investment (George and Hwang, 2004). Also, use volume as investment signal provide good prediction power (Blume and Easley, 1994). Alexander (1964) suggested that some technical analysis give profit. Theil and Leenders (1965) found that the stock price of Amsterdam Stock Exchange has pattern. They suggested that the price continue to move up and down according to performance of previous day. Moreover, Ratner and Leal (1999) suggested that using moving average in emerging market has some predictive power.

The mechanism of technical analysis is that people think that the observed trend will continue itself. When a trend is showed, it can be detected by technical indicator. Investors can take their position according to the technical indicator. An investor can maintain his investment position until technical analysis show the trend has changed (Pring, 1991).

On the other hand, some researches claimed that technical analysis is useless. Moving average trading rule suggests buy when price moves above a particular moving average and sell when the price below that average. It failed to provide net gain by using this method in Dow Jones (Brock et al., 1992). Alsi, Fama and Blume (1966) suggested that technical analysis in Dow-Jones Industrial Average cannot provided excess returns if transaction costs are involved in calculation. Bachelier (1900) suggest that price changes are independent from each transaction, and price variation should have normal distributions. Moreover, people familiar with chart analysis cannot find out the different between real chart and random generate chart (Siegel, 1998). Similarly, Arditti (1978) foundsame observation as Siegel. Also, head-and-shoulders chart pattern analysis cannot provide any predictive power on investment. Investors seem follow random signal on this kind of analysis (Osler, 1998). Moreover, a hedge fund called "Long Term Capital Management" (LTCM) collapsed in 1998. This fund was invested according to mathematical model. It implied that price analysis may not work. In addition, some people argue that the popular of TI is not possible if it is not valid. It may explain by that investors want to decrease uncertainty and stress. This character of human has mentioned by Scott Armstrong (1980).Besides, an early research suggest that forecast of stock market is not accurate (Cowles, 1933). It seems that the validity of technical analysis is not conclusive in different research. This research tries to test the validity of some indicators. The technical analysis is not conclusive in the following section.

There are many tools for technical analysis. It includes bar charts, point-and-figure charts, candlestick charts and many other methods. Besides, some technical indicators are used, such as Moving Average Convergence-Divergence (MACD), Average Directional Index (ADX), Stochastic Oscillator (SO) and many other indicators. Indeed, there are too many technical analysis tools that cannot be described here. However, it is obvious that such tools can divide by two groups. One group has the characteristic that the buy and sale signal is defined by analyst's experience, personal preference and experience. In other words, it is subjective. Bar chart, point-and-figure chart and candlestick chart belongs to this group. For example the trend lines draw by bar chart depends on the time horizon. Different analyst can draw different implications on same data or charts. The pattern and shapes of candlestick chart cannot define precisely. On the other hand, there are many quantitative indicators developed in recent years. This group includes technical indicators such as MACD, ADX and SO. This group of indicators has well defined mathematic definition. The buy and sale signal of such indicators are much objective. Different analysts should draw same buy or sale decision according to the indicators. Technical analysis by such quantitative indicators can prevent bias from psychological fault by human perception. It also prevents decision affected by public opinions. For example, 77% of suggestions from analysts are buying (Groth, 1979).

This essay does not intends to discuss subjective technical analysis tool. It is because define the buy and sale signal is subjective. It is not possible for different person to take same decision on same graph. Proving of validity of such tools is not possible. Although, some research claimed that it can define some subjective technical analysis tool. Since this research is not going to investigate subjective technical analysis tool, such discussion is stopped here. Thus, this essay concentrates on find out the validity of some popular technical indicators. They are MACD, ADX and SO.Moving Average Convergence-Divergence (MACD) is developed by Gerald Appel. MACD composed of two lines and a histogram. It can be use to identify strength, direction, momentum and duration.

12-26 day MACD = EMA (12 day) - EMA (26 day) = Short term moving average - Long term moving averageSignal line = EMA(9day)

MACD Histogram: MACD line - Signal line

EMA stand for Exponential Moving Average.

N-day smoothing constant=2/(N+1)

N-day EMA=Previous N-day EMA+N-day smoothing constant*(Closing price - Previous N-day EMA)

The first N-day EMA can use simple average as reference.

The histogram is positive if MACD line large than signal line and vice versa. Normally, the number of dayson MACD line and signal are set as 12,26,9 respectively. However, such setting can be change to adjust the sensitivity. The sensitivity of MACD can increase by use smaller short term moving average and larger long term moving average, such as MACD (5, 35, and 5). In this research, normal setting MACD (12, 26, and 5) is used. The MACD linesare moving up and down among the zero lines. When 12-day EMA is larger than 26-day EMA, MACD is positive. It means that upward momentum is increasing and vice versa. When MACD line is going above the signal line, the stock price is forecast to increase and vice versa. The number of signals depends on the volatility of that stock. MACD cannot be use to compare momentum between different stocks. It is because the value of MACD depends on the price size of individual stock. Other price size independent momentum should be used.

MACD can give signal in three situations:

- 1. MACD line crosses the signal line- buy when MACD line larger than signal line and vice versa.
- 2. MACD line crosses zero above zero means stock price trends upward and vice versa.
- 3. Positive and negative histogram small histogram imply change of trend or the current trend weaker and vice versa. Positive histogram means a buy signal and vice versa.

Average Directional Index (ADX)

ADX (Average Directional Index) is developed by Welles Wilder. It can identify the trend and strength. It composed of Minus Directional Indicator (-DI) and Plus Directional Indicator (+DI) that can identify trend direction.

$$+DI = \frac{+DM}{TR}$$
$$-DI = \frac{-DM}{TR}$$

+ DM= absolute value of (Today's High – Yesterday's high) - DM= absolute value of (Today's low- Yesterday's low) (The definition "-DM" and "+DM" are a description of direction of movement. It is not treated as positive or negative value in the equation.)

True Range (TR) = Maximum value of either the following combination within 14 days

Today's High- Today's Low

Today's high-Yesterday's Close

Yesterday's Close- Today's Low

+ DI, - DI can be calculated by above numbers.

$$DX = \frac{|(+DI) - (-DI)|}{(+DI) + (-DI)} \times 100$$

DX=Directional movement index

In order to make the directional indicator (DI) more accurate and smooth, 14 days data is used.

$$+DI_{14} = \frac{+DM_{14}}{TR_{14}}$$
$$-DI_{14} = \frac{-DM_{14}}{TR_{14}}$$
$$-DI_{14} = \frac{-DM_{14}}{TR_{14}}$$
$$Today's +DM_{14} = Previous +DM_{14} - \frac{Previous +DM_{14}}{14} + Today's +DM_{14}$$
$$Today's - DM_{14} = Previous -DM_{14} - \frac{Previous -DM_{14}}{14} + Today's -DM_{14}$$
$$Today's TR_{14} = Previous TR_{14} - \frac{Previous -TR_{14}}{14} + Today's TR_{14}$$

$$DX_{14} = \frac{|(+DI_{14}) - (-DI_{14})|}{(+DI_{14}) + (-DI_{14})} \times 100$$
$$ADX_{14} = \frac{14 \text{ days } DX_{14}}{14}$$
$$Today's ADX_{14} = \frac{Previous ADX_{14} \times 13 + DX_{14} Today}{14}$$

When $+DI_{14}$ larger than $-DI_{14}$, it means a buy signal and vice versa. Besides, ADX can determine if there are obvious trend in such signals. Some traders use ADX_{14} equal to 20 as the basic requirement on these indicators. It means that when ADX_{14} equal or below 20, traders ignores the signal generated by ADX. Same filter is used in this research. This research assume the previous signal is valid until the next reverse signal with ADX_{14} large than 20 is given. Stochastic Oscillator(SO)

SO(Stochastic Oscillator) is developed by George C. Lane. It is a momentum indicator.

% K = (Current Close- Lowest Low)/ (Highest High- Lowest Low)* 100

%D= 3-day (Simple moving average) SMA of %K

Lowest Low = Lowest Low for look- back period (14 periods for default)

Highest High= highest high for the look-back period (14 periods for default)

The periods use can be days, weeks or months.

There are two kinds of oscillator depends on the smoothing technique used. Those are:

1. Fast Stochastic Oscillator

Fast %K= %K

Fast %D= 3-period SMA of Fast %K

2. Slow Stochastic Oscillator

Slow %K=Fast %D = Fast %K smoothed with 3-period SMA

Slow %D= 3-period SMA slow %K

For both fast and slow SO, when %K larger than %D imply a buy signal and vice versa.

Slow SO give less false signal, this research use slow stochastic oscillator in calculation.

The following section will state the research question and hypotheses clearly.

3. Research Methods

This research wants to find out if investors trading index according to technical indicators can gain profit compare with buy and hold strategy. The technical indicators investigated are MACD, ADX and SO. Besides, this research wants to find out what the combine decisions of two or more technical indicators affect the validity.Indexes

158

from nine major markets are investigated in this research.

This includes S&P500(SP), Dow Jones Industrial Average(DJ), Nasdaq composite(NA), FTSE 100(FT), DAX(DA), CAC 40(CA), Nikkei 225(NI), Hang Seng(HS) and Shanghai composite index(SS). Daily data investigated samples from 1-1-1999 to 1-8-2012. Weekly and monthly data concerned samples from 1-1-1993 to 1-8-2012. All the sample data is collected by server of http://finance.yahoo.com/ and <a href="ht

Some assumptions are made for the above data.

- Trading signal is available after closing of relevant period (day, week or month). It is not possible for trader to buy
 or sell on the closing index at the end of that period. It assumes investors can buy or sale at the closing price on
 next trading period.
- 2. Brokerage, slippage and taxes are ignored while calculations.
- 3. Close price is adjusted for dividends and splits.
- 4. Cash return is not considered.

The assumption 1 is very important to prevent look-ahead bias (Haugen,1999). This bias occurs when someone undergo back test use technical analysis involves closing price. If a signal generate, and he assume that he can trading according to the closing price. Indeed, he can only trade on the price in the opening of next trading period. However, sometimes investors cannot trade on the opening price during a volatile market. Thus, the research uses the closing price of next date as trading price for conservative. This research wants to find out if there are any different on profit between buy and hold strategy and trading according to technical indicators. Besides, the combine effect of technical indicators will also be scrutinized. Firstly, raw market historical price is input to computer. Then, the signal if technical indicator is calculated. Normally, use +1 as buy signal and -1 as sell signal. When first signal found, the closing price of next period is recorded (P1). When a second signal found, similarly, the closing price of next period is recorded (P2). The profit gain by B&H strategy is P2-P1. The profit gain by L&S strategy is the first signal sign multiple the profit gain by B&H. During the investment period, a lot of sample pairs of profit gain by B&H or L&S provided. This data is use to undergo statistic test in following section. Only samples have df more or equal to 30 are tested. Samples that have f less than 30 are not considered in this research.

4. Empirical Results and Interpretations

Generally, daily and weekly samples provided enough sample pairs to undergo statistic test. However, monthly samples failed to provide enough sample pairs for meaningful statistic test in most cases. Only the samples concerned with SO in monthly samples provided enough samples to undergo statistic test. There are too many samples in this research; reader is recommended to read the note for the abbreviation of samples at the end of table before reading the result. Besides, sometimes the word sample pair is used. Sample pair means the sample come from same source with different strategies.

Daily data

The empirical results are depicted in table 1. Generally, 35 sample pairs show valid significance out of 63 samples pairs in daily data. All sample pairs shows that the median of B&H strategy is larger than L&S strategy. Effect size r of all samples is less than 0.3 means that the effect is low. Since all the daily data cannot pass normality test, the significance of mean values are not know. However, the general trend can also be considered. DA, DJ, FT, HS and SP markets show that the mean of B&H strategy is larger than L&S strategy. This is same as compare the different in median.

However, 6 sample pairs in SS market, 3 sample pairs in NA market and 3 sample pairs in CA market show the opposite relationship. Standard deviation of mean value in all samples is large. It range from the minimum 7 times of its corresponding mean in sample DJDASXLS (M=-68.956 SD=510.763) to the maximum 300 times of its

corresponding mean in sample CADMXXBH (M= -0.599 SD=186.364). The average standard deviation to mean ratio is 186.

This means that some samples have extreme large value. All samples show positive skewness in L&S strategy. Almost all samples of B&H strategy show negative skewness except FTDMAXBH (Skewness=0.428), FTDASXBH (Skewness=0.140), HSMXXBH (Skewness=0.662), SSDMXXBH(Skewness=2.218), SSDAXXBH(Skewness=1.316), SSDMAXBH (Skewness=0.219) and SSDMSXBH(Skewness=2.334). Almost all samples show kurtosis large than 1 range from minimum CADASXBH (Kurtosis=1.210) to maximum SPDMASLS (Kurtosis=22.434). Some samples show kurtosis less than one, which are CADMAXBH (Kurtosis=0.446),CADMAXLS (Kurtosis=0.315),CADASXLS (Kurtosis=0.941),DJDMAXBH (Kurtosis=-0.518) and DJDMAXLS (Kurtosis=-0.189).

When consider market characteristic, all the 7 sample pairs show significant different in HS market. There are 6 sample pairs out of 7 show significant different in DA market. On the contrary, only 1 sample pairs in NI and SS show significant different. TI characteristic of sample is described in the following paragraph. Use MACD as investment strategy show significance low median in CA, DA, DJ, FT, HS, NA and SP market. Besides, the different in median of profit is not significance in NI and SS market. Use ADX as investment as investment strategy show significance low median in DA, DJ, FT, HS and SP market. Besides, the different in median of profit in other market is not significance low median in all markets.

Weekly data

The empirical results are depicted in table 2. There are only 58 sample pairs that have df more than 30. There is only 20 sample pairsproviding significance difference. All the sample pairs that show significant difference have larger median of B&H strategy. Effect size r of most samples is less than 0.3 means that the effect on different on median is low. Some exception are found in sample DJWMASBH (effect size r = 0.38), SPWASXBH(effect size r = 0.307) and SPWMASBH (effect size r = 0.365). Effect size is more than 0.3 means median effect.

Some of weekly data pass normality test, which has been discussed on section 5.2. Apart from that, the mean value of profit gain should be considered. T-test cannot be used to find out the significance. The general trend of means of profit gain by the two strategies shows clear market difference. Such general trend is not likely occurred solely by chance. In the market DJ, FT, NA and SP, all the mean profit of B&H strategy is larger than L&S strategy. On the contrary, in the market NI, all the samples shows that mean value of L&H strategy is larger than B&H strategy. In the market CA, DA and SS, only one exception sample pairs show mean profit of B&H strategy larger than L&S strategy. They are samples CAWSXXBH, CAWSXXLS, DAWSXXBH, DAWSXXLS, SSWSXXBH and SSWSXXLS. The performance of HS market is not consistence. It shows that 3 sample pairs have mean value of B&H strategy lower than LS strategy. Those are samples HSMXXBH, HSMXXLS, HSWSXXBH, HSWSXXLS, HSWMSXBH and HSWMSXLS. Other samples of HS market show the opposite trend.

Standard deviation of mean value in all samples is large. It range from the minimum 3 times of its corresponding mean in sample SSWMASLS (M= 223.629SD=694.047) to the maximum 131 times of its corresponding mean in sample FTWMXXLS (M= 2.691SD=352.474). The average standard deviation to mean ratio is 15.075. This means that the samples have extreme long tail. There are 10 samples of B&H strategy show positive skewness and other 48 samples show negative skewness. There are 4 samples in L&S show negative skewness and other 54 samples show positive skewness. Samples show negative skewness are HSWAXXLS (Skewness=-0.141), NAWASXLS (Skewness=-0.894), NAWMAXLS (Skewness=-0.293), and SSWSXXLS (Skewness=-0.300). Almost all samples of B&H strategy show kurtosis more than 1 except sample HSWAXXBH (kurtosis=0.476) and sample HSWMAXBH (Skewness=0.000). Other samples show kurtosis large than 1 ranged from minimum DIWMXXBH (Kurtosis =1.117) to maximum SSWMXXBH (Kurtosis=26.143). There are 10 samples of L&S strategy show kurtosis less than 1. Other samples show kurtosis large than 1 ranged from minimum DJWMSXLS (Kurtosis =1.102) to maximum SSWMXXLS (Kurtosis=24.119). When consider market characteristic, all the 7 sample pairs show significant different in NA market. There are 6 sample pairs out of 7 show significant different in SP market. NI, HS and SS market do not show any significant different in median. Other markets show 1 or 2 samples pairs significance. MACD as L&S investment strategy show significance low median in NA and SP markets. Other markets do not show significance difference in median by any strategy.ADX as L&S investment strategy show significance low median in NA and SP markets. The use of SO as L&S investment strategy shows significant low median in CA, DA, FT, NA and SP markets.

Monthly data

The empirical results are depicted in table 3. There are only 9 sample pairs that have n more than 30. There are only 3 sample pairs providing significance difference.

All the samples concerned with the SO technical indicator. All the sample pairs that show significant difference have larger median of B&H strategy Effect size r of most samples is less than 0.1 means that the effect on different on median is small. All the monthly sample pairs cannot pass normality test. Thus, the significance of mean different cannot be found by t-test. All the mean values of profit gain from B&H strategy are greater than that from L&S strategy with two exceptions. They are CA and NI market. Standard deviations of mean value in all samples are large. It range from the minimum5.8 times of its corresponding mean in sample NIMSXXLS(M= 315.646 SD=1839.732) to 74 times in sample SSMSXXLS(M= 6.707 SD=501.026). The average standard deviation to mean ratio is 19.87. Majority of samples of B&H strategy show negative skewness except sample DAMSXXBH (Skewness=0.077). All the samples of L&S strategy show positive skewness.

5. Conclusion and Implications

This paper aims to find out that if there are any different on profit by the two investment strategy. The two strategies are buy and hold strategy and long and short strategy according to the signal generated by technical indicators. This research not only compares the performance of three common technical indicators, it also compares the performance of the combine effect of such indicators. Another objective of this research is to find out if there are any markets different by using TI. Besides, this paper covers 9 major stock markets in the world. It is the first study that investigates in such wide market range. The result of this paper is practically useful for investors to decide which investment strategy is appropriate. However, all the research result is based on historical data, it may not reflect the performance of markets in the future. If consider the mean without consider the significance. Daily samples have consistent result. It shows that L&S cannot gain extra profit than B&H. However, the performance of weekly samples is mixed. If someone uses L&S strategy to invest in NI index, it provides consistent profit. It is consistent in any TI or combination of TI. However, as t-test is not feasible in such samples. This observation cannot exclude the possibility of chance. Other markets shows L&S perform better in some samples, such markets are CA, DA, SS and NI. Likewise, this information cannot rule out the possibility that such deviations are solely due to chance. Moreover, all of them have small effect. The samples of long and short strategies mainly show positive skewness. On the contrary, samples of buy and hold strategies mainly show negative skewness. It means that most data of L&S strategy is less than B&H strategy.

The mean profit of daily data shows that B&H strategy is better. Besides, the mean profit of weekly data agrees with daily data on DJ, FT, NA and SP markets only. However, the mean profits of L&S are larger than B&H strategy in NI, CA, DA and SS markets. The performance of SS can be explained by research suggests that new stock market is easily affected by TI (Eui Jung, Eduardo and Benjamin, 2004). SS market is new market relatively. Besides, Los (2001) found that Asian stock market easily affect by the moving price. However, the performance of CA and DA market cannot be explained by this research.

The performance of mean profit of NI in weekly data is special. All the L&S strategy according to any indicators provide profit in certain value. It may explained by the long term declining market price of NI market. In other word, use any TI on weekly data can gain profit more the B&H strategy. However, it may due to the B&H strategy lose profit with the bearish Japan market. As a result, any strategy that provided short signal can outperform the B&H strategy in NI market in the past fifteen years.Use of TI does not give extra benefit in median comparison. On the contrary, it shows significance loss in some cases.

This research finds that most profit gain by investment strategies are not normal distributed. Use of daily data to L&S cannot gain extra profit compare with B&H strategies. However, use of weekly data can gain some profit in certain market. Unfortunately, such implication cannot be proved by t-test due to normal distribution restriction. The samples of profit gain or loss seems affect seriously by outliner. It is support by the large kurtosis and large standard deviation. Investor should watch carefully on the outliner cases, which affect the resultant profit. This research provides some statistic information compare the B&H strategy and L&S strategy. If solely look into the statistical data, L&S strategy cannot provides extra benefit. However, if consider the mean value of samples of weekly data, L&S strategy can provides some benefit in NI,CA,DA and SS. It implies that investors can consider using TI to invest in such markets. This research implies that stock market is not weak form. Use historical data cannot provide extra profit to investors.

This research investigate the technical indicators MACD, ADX and SO only. Indeed, there are a lot of technical indicators need to test. Besides, Ashby's Law of Requisite Variety (Ashby, 1963), suggest that the solution of problem should has same degree of complexity. It means that if technical indicator can show the trend of complex change of stock market, it should have similar complexity. A research conducts by Hsu and Kuan (2005) shows that complex rules have greater ratio to gain significance profit than simple rules. Their research covered four stock market indexes: Dow Jones, S&P 500, NASDAQ, and Russell 2000. However, when the effect of data mining is compensated, the significance diminished in Dow Jones and S&P 500 Index. Clearly, further research should consider other complex technical indicators. This research excludes the transaction cost. The transaction cost of daily sample is huge. Alexander (1961) found that transaction cost decrease the profit of technical analysis.

Mann-Whitney Samples	n Test	Mean Rank	Mann- Whitney U	Z	Asymp. p (2-tailed)	Medi an (<i>Mdn</i>	Effec t size r	Explore Mean (M)	data Std. Deviatio n (<i>SD</i>)	Std. Error (<i>SE</i>)	Skewn ess	Kurto -sis	Hypot-he	esis
CADMXXB H	321	344.39	44172.500	- 3.127	.002*) 17.42 0	0.12 3	599	185.364	10.346	449	3.377	H1(null) rejected	
CADMXXLS	321	298.61		5.127		- 33.37 0	5	-7.544	185.203	10.337	1.097	3.575	rejected	
CADAXXB H	102	107.08	4734.5	- 1.109	.267	7.130	0.07 8	1.335	285.564	28.275	370	1.747	H2(null) cannot rejected	be
CADAXXLS	102	97.92				- 34.28 0		14.754	285.180	28.237	1.119	1.508	rejected	
CADSXXBH	891	942.89	351149.500	- 4.216.	.000*	7.610	0.1	412	113.130	3.790	429	3.772	H3(null) rejected	
CADSXXLS	891	840.11				- 17.28 0		-3.99	113.041	3.787	1.318	3.975)	
CADMAXB H	74	75.61	2655.500	.316	.752	22.02 0	0.02 6	2.810	348.222	40.480	085	.446	H4(null) cannot rejected	be
CADMAXLS	74	73.39				- 53.65 0		18.860	347.715	40.421	.567	.315)	
CADMSXBH	283	308.12	33077.000	- 3.582	.000*	16.03 0	0.15 1	679	200.172	11.899	521	4.496	H5(null) rejected	
CADMSXLS	283	258.88		51002		- 50.31 0	-	-13.142	199.735	11.873	1.434	4.925	rejected	
CADASXBH	86	89.77	3416.500	862	.389	44.53 5	0.06 6	2.418	322.240	34.748	509	1.210	H6(null) cannot rejected	be
CADASXLS	86	83.23				- 55.58 0		20.669	321.581	34.677	.972	.941	rejected	
CADMASBH	105	112.70	4757.00	- 1.716	.086	13.53 0	0.11 8	-2.782	293.657	28.658	951	2.009	H7(null) cannot rejected	be
CADMASLS	105	98.30				- 32.76 0		2.238	293.657	28.658	1.045	2.013	rejected	
DADMXXB H	292	306.17	38641.00	- 1.958	.050*	23.35 0	0.08 1	7.906	261.600	15.309	713	4.676	H1(null) rejected	
DADMXXLS	292	278.83		1.950		- 45.73 5	ī	1.103	261.720	15.316	1.449	4.556	rejected	
DADAXXB H	130	146.76	6336.000	- 3.487	.000*	36.37 5	0.21 6	22.918	453.744	39.796	- 1.309	10.778	H2(null) rejected	
DADAXXLS	130	114.24		5.407		- 43.09 0	v	-27.416	453.505	39.775	2.595	11.176	igeneu	
DADSXXBH	876	914.73	350198.500	- 3.163	.002*	11.90 5	0.07 6	3.037	159.707	5.396	666	4.856	H3(null) rejected	
DADSXXLS	876	838.27		5.105		- 21.40	U	2.143	159.707	5.396	1.324	4.732	igeeteu	

Table 1 Mann-Whitney Test and Explore data (Daily)

162

						5								
DADMAXB H	100	111.51	3899.000	- 2.690	.007*	112.4 45	0.19	30.938	537.400	53.740	768	7.939	H4(null) rejected	
DADMAXLS	100	89.49		2.070		- 124.8		-15.880	538.060	53.806	2.319	8.002	rejected	
DADMSXB H	256	268.62	29666.000	- 1.853	.064	70 33.17 0	0.08 2	9.018	282.176	17.636	880	4.595	H5(null) cannot	be
DADMSXLS	256	244.38				-		5.139	282.272	17.642	1.486	4.364	rejected	
DADASXBH	116	132.33	4891.500	-	.000*	59.96 72.40	0.23	25.451	474.465	44.053	-	10.080	H6(null)	
DADASXLS	116	100.67		3.593		0 - 100.1	6	-27.414	474.358	44.043	1.251 2.617	10.437	rejected	
DADMASB	127	144.86	5859.500	-	.000*	90 73.60	0.23	20.498	463.061	41.090	-	11.914	H7(null)	
H DADMASLS	127	110.14		3.766		0	6	-13.778	463.320	41.113	1.706 2.920	11.936	rejected	
DJDMXXBH	285	305.69	34858.000	-	.003*	92.23 35.25	0.12	13.595	361.003	21.384	-	5.584	H1(null)	
DJDMXXLS	285	265.31		2.927		0 - 82.92	3	-6.516	361.189	21.395	1.030 1.746	5.546	rejected	
DJDAXXBH	149	163.58	9002.500	-	.005*	0 17.07	0.16	26.084	476.471	39.034	696	5.050	H2(null)	
DJDAXXLS	149	135.42		2.821		0	3	-58.385	473.578	38.797	1.663	5.856	rejected	
DJDSXXBH	878	933.88	336819.000	-	.000*	149.8 60 11.98	0.10	4.460	225.137	7.598	668	7.740	H3(null)	
DJDSXXLS	878	823.12		4.577		0	9	-9.477	224.989	7.593	1.639	7.985	rejected	
2						42. 76 0								
DJDMAXBH	110	118.84	5132.500	- 1.944	.052	12.18 0	0.13 1	34.026	537.577	51.256	112	518	H4(null) cannot rejected	be
DJDMAXLS	110	102.16				- 192.3		-86.896	531.547	50.681	.567	189	rejected	
DJDMSXBH	269	288.83	30980.000	-	.004*	75 46.86	0.12	14.403	368.289	22.455	-	5.328	H5(null)	
DJDMSXLS	269	250.17		2.885		0 -	4	-8.257	368.486	22.467	1.050 1.733	5.308	rejected	
						104.2 20								
DJDASXBH	138	151.72	7697.500	- 2.752	.006*	15.44 5	0.16 6	29.124	514.604	43.806	497	4.023	H6(null) rejected	
DJDASXLS	138	125.28				- 151.9		-68.956	510.763	43.479	1.579	4.903		
DJDMASBH	125	130.68	7165.500	- 1.132	.258	80 24.60 0	0.07 2	29.827	527.097	47.145	- 1.225	4.776	H7(null) cannot	be
DJDMASLS	125	120.32				- 27.72		17.874	527.634	47.193	1.156	4.310	rejected	
FTDMXXB	299	322.47	37832.500	-	.001*	0 9.900	0.13	.207	187.614	10.850	830	4.637	H1(null)	
H FTDMXXLS	299	276.53		3.251		-	3	-6.878	187.476	10.842	1.686	4.897	rejected	
						34.50 0								
FTDAXXBH	127	137.53	6791.000	- 2.175	.030*	20.70 0	0.13 6	.829	237.379	21.064	134	3.547	H2(null) rejected	
FTDAXXLS	127	117.47				- 43.50 0		-17.252	236.748	21.008	1.374	3.996		
FTDSXXBH	844	889.29	318364.500	- 3.775	.000*	8.600	0.09 2	.0363	118.008	4.062	515	4.040	H3(null) rejected	
FTDSXXLS	844	799.71		5.775		- 21.85	4	-2.032	117.979	4.061	1.302	4.132	rejected	
FTDMAXB H	97	103.25	4146.500	- 1.427	.154	0 - 3.800	0.10 2	-1.609	284.681	28.905	.428	2.913	H4(null) cannot	be

													rejected	
FTDMAXLS	97	91.75				- 59.60 0		-33.929	282.633	28.697	.978	3.476	Tejeeteu	
FTDMSXBH	267	288.30	30093.000	-	.002*	11.50 0	0.13 5	.232	194.219	11.886	994	4.015	H5(null)	
FTDMSXLS	267	246.70		3.115		- 43.60 0	5	-7.519	194.072	11.877	1.579	4.271	rejected	
FTDASXBH	105	111.92	4838.500	- 1.531	.126	0 22.90 0	0.10 6	1.003	262.240	25.592	.140	3.893	H6(null) cannot rejected	be
FTDASXLS	105	99.08				- 34.30 0		-6.05	262.178	25.586	1.445	4.038	rejected	
FTDMASBH	115	123.72	5667.500	- 1.873	.061	- 1.800	0.12 4	-1.357	245.918	22.932	919	2.915	H7(null) cannot rejected	be
FTDMASLS	115	107.28				- 34.40 0		-13.717	245.543	22.897	.865	3.154	rejected	
HSMXXBH	266	279.58	31897.500	- 1.963	.050*	34.03 0	0.08 5	47.110	986.301	60.474	.662	8.007	H1(null)	
HSMXXLS	266	253.42		1.903		- 125.7 85	5	18.831	987.247	60.532	1.830	7.962	rejected	
HSDAXXBH	157	174.02	9731.500	-	.001*	40.50	0.18	73.176	1270.75	101.417	821	9.586	H2(null)	
HSDAXXLS	157	140.98		3.224		0 - 178.6	2	- 109.41	1 1268.13 3	101.208	1.902	10.143	rejected	
HSDSXXBH	839	875.45	321801.000	-	.002*	40 26.91	0.07	4 15.014	543.943	18.779	313	6.021	H3(null)	
HSDSXXLS	839	803.55		3.039		0 - 57.04	4	6.005	544.117	18.785	1.142	5.928	rejected	
HSDMAXB	101	111.68	4072.000	-	.013*	0 45.08	0.17	116.24	1556.63	154.891	903	5.211	H4(null)	
H HSDMAXLS	101	91.32		2.476		0 - 303.8	4	2 - 169.02	5 1551.74 1	154.404	1.449	5.650	rejected	
HSDMSXBH	234	247.03	24445.500	-	.045*	30 86.40	0.09	8 55.068	1083.69	70.843	260	10.964	H5(null)	
HSDMSXLS	234	221.97		2.005		5 - 146.1	3	43.303	0 1084.22 5	70.878	2.235	10.525	rejected	
HSDASXBH	127	140.36	6431.500	- 2.789	.005*	15 51.70 0	0.17 5	90.461	1391.00 8	123.432	658	7.116	H6(null) rejected	
HSDASXLS	127	114.64				- 211.9		-82.976	1391.48 1	123.474	1.668	7.340		
HSDMASBH	117	127.91	5627.000	-	.019*	00 75.80	0.15	100.34	1392.77	128.762	-	14.588	H7(null)	
HSDMASLS	117	107.09		2.352		0 -	4	6 68.311	4 1394.73	128.943	2.324 2.618	13.286	rejected	
						124.8 70			2					
NADMXXB H	311	333.30	41581.500	- 3.025	.002*	9.130	0.12 1	2.592	145.878	8.272	- 1.313	8.240	H1(null) rejected	
NADMXXLS	311	289.70				- 21.11		-3.595	145.861	8.271	1.145	8.265		
NADAXXB H	142	147.74	9338.500	- 1.074	.283	7.515	0.06 4	9.254	203.186	17.051	875	7.886	H2(null) cannot rejected	be
NADAXXLS	142	137.26				- 5.685		22.540	202.137	16.963	1.884	7.018		
NADSXXBH	913	973.78	361751.000	- 4.885	.000*	4.450	0.11 4	1.010	79.528	2.632	- 1.468	19.687	H3(null) rejected	
NADSXXLS	913	853.22				- 11.42		-2.064	79.498	2.631	2.450	19.888	,	
NADMAXB H	102	105.21	4925.500	656	.512	0 8.105	0.04 6	12.283	242.055	23.967	320	2.958	H4(null) cannot	be
NADMAXLS	102	99.79				-		8.968	242.206	23.982	.671	2.780	rejected	

NADMASLE 12.5 17.70 $\left[-25, -25, -25, -25, -25, -25, -25, -25, $							16.82 5								
NADMSKIS 271 25.07		271	292.23	31101.500		.002*			2.975	146.331	8.889		6.816		
NADANNH 130 1396 233.00 2.007 1446 0.12 9.67 1.207 2.507 2.60.01 1.307 1.307 1.407 1.208 1.207 1.208 1.207 1.208 1.207 1.208 1.207 1.208 <th1< td=""><td>NADMSXLS</td><td>271</td><td>250.77</td><td></td><td></td><td></td><td></td><td></td><td>-2.814</td><td>146.331</td><td>8.889</td><td>1.273</td><td>6.821</td><td>,</td><td></td></th1<>	NADMSXLS	271	250.77						-2.814	146.331	8.889	1.273	6.821	,	
NADAXXIS 130 121.41	NADASXBH	130	139.86	7233.000	- 2.007	.045*	14.06		9.637	215.835	18.930		7.239		
ALDMANSH 125 129.2 686.200 1.29 218 0 0.37 24.38 23.38 2.38 5.46 1.700 1.700 1.700 1.700 1.700 1.700 2.100<	NADASXLS	130	121.14		2.007		-	-	12.299	215.698	18.918		6.70	rejected	
NADMASLS 12.5 11.7.9		123	129.21	6862.000	- 1.259	.208	0 12.38	0.08	10.579	247.386	22.306		5.864	cannot	be
NIDMXXBH 257 268.41 30221.500 6 1060 12.04 0.07 -21.362 577.33 30.088 6 4.20 III.000 regreted NIDMXXIS 257 246.59 - 1.00 - 26.091 577.500 56.024 1.666 4.065 regreted 102-9 20.51 1.050 1.050 100 20.50 56.024 1.666 4.065 regreted 100 20.51 1.050 1.050 1.050 1.050 1.050 1.050 2.051 1.050	NADMASLS	123	117.79				-		27.872	246.021	22.183	1.327	5.145	rejected	
NIDMXXLS 257 246.59 $$	NIDMXXBH	257	268.41	30221.500	- 1.665	.096	12.04		-21.362	577.733	36.038		4.219	cannot	be
NIDAXXBH 127 134.7 7145.50 -10 260 90 -38.667 856.105 73.97 -10 11351 4400 and cannot reperted	NIDMXXLS	257	246.59				- 102.9		26.991	577.509	36.024	1.666	4.065	rejected	
NIDAXXLS 127 120.26	NIDAXXBH	127	134.74	7145.500		.116	28.60		-38.667	856.105	75.967		11.851	cannot	be
NIDSXXBI 840 880.22 319438.500 0.01* 21.54 0.08 4.210 31.534 11.430 770 3.877 H3[mal] rejected NIDSXXLS 840 800.78 -	NIDAXXLS	127	120.26				- 142.2		-21.354	856.713	76.021	2.374	12.443	rejected	
NIDSXXLS 840 800.78 -	NIDSXXBH	840	880.22	319438.500	- 3 356	.001*	21.54		-4.210	331.534	11.439	770	3.587	. ,	
NIDMAXBH 97 101.64 4303.000 . .305 18.4 0.07 -50.626 906.597 92.051 .589 1.915 H4(null) rejected b NIDMAXLS 97 93.36 - - - - - - - - - 0 95.868 91.977 1.249 2.417 - <td>NIDSXXLS</td> <td>840</td> <td>800.78</td> <td></td> <td>5.550</td> <td></td> <td>-</td> <td>2</td> <td>-4.388</td> <td>331.534</td> <td>11.439</td> <td>1.263</td> <td>3.693</td> <td>rejected</td> <td></td>	NIDSXXLS	840	800.78		5.550		-	2	-4.388	331.534	11.439	1.263	3.693	rejected	
NIDMAXLS 97 93.36 - - - - - - - - - - - - - - - - - 37.5 - 37.5 - 37.5 - 37.13 - - 3.751 H5(null) cannot rejected b NIDMSXIS 245 234.96 - 1.647 100 21.87 0.07 -22.082 581.239 37.134 1.58 3.665 NIDASXBH 117 124.38 6039.000 - 1.56 100 21.87 0.10 -41.972 898.788 83.093 - 8.785 H6(null) cannot rejected b NIDASXLS 117 110.62 - - -46.104 898.594 83.075 2.074 9.570 NIDMASLS 115 109.00 - - - - - - - - 1.08 1.09 0.71 2.126 60.9357 81.068 </td <td>NIDMAXBH</td> <td>97</td> <td>101.64</td> <td>4303.000</td> <td></td> <td>.305</td> <td>118.4</td> <td></td> <td>-50.626</td> <td>906.597</td> <td>92.051</td> <td>589</td> <td>1.915</td> <td>cannot</td> <td>be</td>	NIDMAXBH	97	101.64	4303.000		.305	118.4		-50.626	906.597	92.051	589	1.915	cannot	be
NIDMSXBH 245 256.04 27431.000 - 1.00 21.87 0.07 -22.408 581.270 37.136 - 3.751 H5(null) cannot bright	NIDMAXLS	97	93.36				- 337.5		-62.250	905.868	91.977	1.249	2.417	rejected	
NIDMSXLS 245 23.496 - 23.082 581.239 37.134 1.584 3.665 NIDASXBH 117 124.38 6039.000 - .120 93.17 0.10 -41.972 898.788 83.093 - 8.785 H6(null) rejected b NIDASXLS 117 110.62 - - -46.104 898.594 83.075 2.074 9.570 rejected b NIDASXLS 117 110.62 - - -46.104 898.594 83.075 2.074 9.570 rejected b NIDMASLS 115 122.00 5865.500 - - - -46.104 898.594 83.075 2.074 9.570 rejected b NIDMASLS 115 109.00 - - - - - - 1.030 rejected b rejected b - 1.030 - - - - 1.046 1.930 - - - - - - - - - - -	NIDMSXBH	245	256.04	27431.000		.100	21.87		-22.408	581.270	37.136		3.751	cannot	be
NIDASXBH 117 124.38 6039.000 - .120 93.17 0.10 -41.972 898.788 83.093 - 8.785 H6(null) cannot rejected b NIDASXLS 117 110.62 - - -46.104 898.594 83.075 2.074 9.570 -	NIDMSXLS	245	234.96						23.082	581.239	37.134	1.584	3.665	rejected	
NIDASXLS 117 110.62 - - - - - - - - - - - - - 20.74 9.570 - <td>NIDASXBH</td> <td>117</td> <td>124.38</td> <td>6039.000</td> <td></td> <td>.120</td> <td>93.17</td> <td></td> <td>-41.972</td> <td>898.788</td> <td>83.093</td> <td></td> <td>8.785</td> <td>cannot</td> <td>be</td>	NIDASXBH	117	124.38	6039.000		.120	93.17		-41.972	898.788	83.093		8.785	cannot	be
NIDMASBH 115 122.00 5865.500 - .139 - 0.09 -40.990 870.280 81.154 - 10.337 H7(null) cannot brejected brej	NIDASXLS	117	110.62						-46.104	898.594	83.075	2.074	9.570	rejected	
NIDMASLS 115 109.00 -	NIDMASBH	115	122.00	5865.500		.139	- 24.16		-40.990	870.280	81.154		10.337	cannot	be
SPDMXXBH 299 323.37 37564.000 - .001* 1.000 0.13 .582 41.085 2.376 - 9.055 H1(null) rejected SPDMXXLS 299 257.63 - - - - - - - - 9.055 H1(null) rejected SPDAXXBH 134 149.01 7033.500 - .002* 8.805 0.18 1.710 61.375 5.302 - 15.495 H2(null) rejected SPDAXXLS 134 119.99 - - - - - - - 1.710 61.317 5.297 2.884 15.876 SPDSXXLS 134 119.99 -	NIDMASLS	115	109.00				- 212.5		-51.216	869.357	81.068	2.322	11.392	rejected	
SPDMXXLS 299 257.63 -	SPDMXXBH	299	323.37	37564.000	-	.001*			.582	41.085	2.376		9.055		
SPDAXXBH 134 149.01 7033.500 - .002* 8.805 0.18 1.710 61.375 5.302 - 15.495 H2(null) SPDAXXLS 134 119.99 - - - -3.170 61.317 5.297 2.884 15.876 SPDSXXBH 916 978.31 362912.000 - .000* 1.840 0.11 .216 25.120 .830 359 3.217 H3(null) SPDSXXLS 916 854.69 - - - - -2.060 25059.8 828 .984 3.573 SPDMAXBH 102 109.61 4477.000 -1.72 .085 6.535 0.12 1.700 68.939 6.826 - 11.664 H4(null) 2.185 - -1.72 .085 6.535 0.12 1.700 68.939 6.826 - 11.664 H4(null)	SPDMXXLS	299	257.63		3.378			8	-3.238	40.964	2.369		9.731	rejected	
SPDAXXLS 134 119.99 - - -3.170 61.317 5.297 2.884 15.876 SPDSXXBH 916 978.31 362912.000 - .000* 1.840 0.11 .216 25.120 .830 359 3.217 H3(null) rejected SPDSXXLS 916 854.69 - - -2.060 25059.8 828 .984 3.573 SPDMAXBH 102 109.61 4477.000 -1.72 .085 6.535 0.12 1.770 68.939 6.826 - 11.664 H4(null) cannot b	SPDAXXBH	134	149.01	7033.500		.002*			1.710	61.375	5.302		15.495		
SPDSXXBH 916 978.31 362912.000 - .000* 1.840 0.11 .216 25.120 .830 359 3.217 H3(null) rejected SPDSXXLS 916 854.69 - - -2.060 25059.8 828 .984 3.573 SPDMAXBH 102 109.61 4477.000 -1.72 .085 6.535 0.12 1.770 68.939 6.826 - 11.664 H4(null) rejected 2.185 -1.72 .085 6.535 0.12 1.770 68.939 6.826 - 11.664 H4(null) rejected	SPDAXXLS	134	119.99		5.005		14.51	/	-3.170	61.317	5.297		15.876	rejected	
SPDSXXLS 916 854.69 - -2.060 25059.8 828 .984 3.573 SPDMAXBH 102 109.61 4477.000 -1.72 .085 6.535 0.12 1.770 68.939 6.826 - 11.664 H4(null) 2.185 cannot b	SPDSXXBH	916	978.31	362912.000		.000*			.216	25.120	.830	359	3.217		
SPDMAXBH 102 109.61 4477.000 -1.72 .085 6.535 0.12 1.770 68.939 6.826 - 11.664 H4(null) 2.185 cannot b	SPDSXXLS	916	854.69		5.001		-	7	-2.060		828	.984	3.573	rejected	
	SPDMAXBH	102	109.61	4477.000	-1.72	.085		0.12	1.770		6.826		11.664	cannot	be

SPDMAXLS	102	95.39				- 17.83		-2.360	68.929	6.825	2.433	11.789		
SPDMSXBH	265	288.27	29079.000	-	.001*	5 1.050	0.14	.656	44.539	2.736	-	7.998	H5(null)	
SPDMSXLS	265	242.73		3.423		- 12.45	9	-2.844	44.457	2.731	1.631 2.067	8.499	rejected	
SPDASXBH	122	136.24	5766.000	- 3.040	.002*	0 8.735	0.19 5	1.878	65.786	5.956	- 2.109	13.148	H6(null)	
SPDASXLS	122	108.76		5.040		- 15.01	5	-4.130	65.676	5.946	2.109	13.690	rejected	
SPDMASBH	127	137.93	6740.500	- 2.262	.024	0 3.820	0.14 2	1.425	66.478	5.899	- 3.087	21.926	H7(null) cannot	be
SPDMASLS	127	117.07				- 7.530		-3.432	66.411	5.893	3.208	22.434	rejected	
SSDMXXBH	263	265.78	33984.500	344	.731	- 5.700	0.01 5	3.034	187.228	11.545	2.218	14.411	H1(null) cannot	be
SSDMXXLS	263	261.22				- 17.81		16.844	186.482	11.499	2.417	13.902	rejected	
SSDAXXBH	149	149.78	11058.500	056	.955	0 1.380	0.00 3	5.409	252.053	20.649	1.316	17.002	H2(null) cannot	be
SSDAXXLS	149	149.22				-		27.675	250.576	20.528	2.616	16.336	rejected	
SSDSXXBH	869	904.36	347290.500	- 2.895	.004*	2.890 2.280	0.06 9	1.276	85.901	2.914	- 1.154	11.678	H3(null) rejected	
SSDSXXLS	869	834.64		2.695		- 3.310	2	319	85.931	2.915	1.414	11.625	rejected	
SSDMAXBH	97	98.82	4576.000	329	.742	7.370	0.02 4	8.645	291.723	29.620	.219	6.477	H4(null) cannot	be
SSDMAXLS	97	96.18				- 29.05		27.669	290.522	29.498	1.590	5.980	rejected	
SSDMSXBH	235	237.43	27160.000	307	.759	0 - 7.110	0.01 4	3.395	199.991	13.046	2.334	14.109	H5(null) cannot	be
SSDMSXLS	235	233.57				- 19.61		19.189	199.102	12.988	2.501	13.548	rejected	
SSDASXBH	123	123.61	7550.500	025	.980	0 4.070	0.00 2	6.553	250.413	22.579	204	6.547	H6(null) cannot	be
SSDASXLS	123	123.39				-		24.457	249.293	22.478	1.087	6.201	rejected	
SSDMASBH	123	130.03	6761.000	- 1.440	.150	5.220 4.090	0.09 2	7.634	284.971	25.695	- 1.759	12.458	H7(null) cannot	be
SSDMASLS	123	116.97				- 20.66 0		20.737	284.317	25.636	2.719	11.557	rejected	

Table 2 Mann-Whitney Test and Explore data (Weekly) Mann-Whitney Test

Table 2 Mann-Whitney Test and Explore data (Weekly)													
Mann-Whitney	Test			-		•	• /	Explore	data				Hypothesis
Samples	n	Mean Rank	Mann- Whitney U	Z	Asymp. p (2-tailed)	Median (<i>Mdn</i>)	Effect size r	Mean (M)	Std. Deviation (SD)	Std. Error (<i>SE</i>)	Skewness	Kurtosis	
CAWMXXBH	70	71.92	2350.500	415	.678	68.110	0.035	25.753	416.824	49.820	410	1.601	H1(null) cannot be rejected
CAWMXXLS	70	69.08				-30.015		54.599	413.996	49.482	.648	1.170	
CAWAXXBH	41	45.95	658.000	- 1.693	.091	120.270	0.187	42.546	745.234	116.386	-2.953	11.288	H2(null) cannot be rejected
CAWAXXLS	41	37.05				-85.300		99.666	739.625	115.510	2.685	9.263	
CAWSXXBH	257	280.84	27025.500	- 3.563	.000*	30.260	0.157	7.169	236.813	14.772	-1.002	4.524	H3(null) rejected
CAWSXXLS	257	234.16				-50.700		-11.634	236.637	14.761	1.058	4.625	

CAWMSXBH	64	66.33	1931.000	558	.557	76.665	0.049	28.168	414.200	51.775	577	1.739	H5(null) cannot be rejected
CAWMSXLS CAWASXBH	64 39	62.67 43.60	600.500	- 1.599	.110	-36.255 180.780	0.181	49.348 44.727	412.184 761.009	51.523 121.859	.637 -2.937	1.276 10.955	H6(null) cannot be
CAWASXLS	39	35.40				-		114.163	753.534	120.662	2.628	8.822	rejected
CAWMASBH	34	37.90	462.500	- 1.417	.157	127.300 167.180	0.172	43.702	786.852	134.944	-2.742	9.332	H7(null) cannot be
CAWMASLS DAWMXXBH	34 72	31.10 76.38	2313.000	- 1.115	.265	20.285 90.350	0.093	128.853 84.524	777.173 586.409	133.284 69.109	2.354 117	7.310 1.582	rejected H1(null) cannot be rejected
DAWMXXLS DAWAXXBH	72 41	68.63 42.68	792.000	450	.653	-59.800 171.760	0.05	105.615 114.725	582.930 777.557	68.699 121.434	1.088 323	.713 1.289	H2(null) cannot be rejected
DAWAXXLS DAWSXXBH	41 266	40.32 288.06	29644.000	-	.001*	-66.070 54.180	0.14	204.861 23.409	758.328 319.210	118.431 19.572	.882 -1.499	.134 6.584	H3(null)
DAWSXXLS	266	244.94		3.234		-40.650		9.315	319.927	19.616	1.699	5.882	rejected
DAWMSXBH	62	64.83	1777.500	722	.470	97.585	0.065	98.157	596.425	75.746	431	1.686	H5(null) cannot be rejected
DAWMSXLS DAWASXBH	62 41	60.17 42.71	791.000	459	.646	-47.595 183.560	0.051	150.681 114.725	585.181 783.691	74.318 122.392	1.008 307	.383 1.144	H6(null) cannot be
DAWASXLS	41	40.29				-		183.052	770.270	120.296	.898	.064	rejected
DAWMASBH	41	46.41	639.000	- 1.869	.062	106.480 193.600	0.206	145.186	864.185	134.963	-1.664	4.527	H7(null) cannot be rejected
DAWMASLS DJWMXXBH	41 85	36.59 92.26	3037.500	- 1.792	.073	-59.300 131.890	0.137	103.893 111.793	870.261 725.882	135.912 78.733	1.182 .005	2.580 1.117	H1(null) cannot be rejected
DJWMXXLS DJWAXXBH	85 32	78.74 36.41	387.000	- 1.679	.093	-30.030 376.085	0.21	-36.005 284.502	733.654 1117.121	79.576 197.481	.573 -1.722	1.193 5.870	H2(null) cannot be rejected
DJWAXXLS DJWSXXBH	32 256	28.59 276.48	27653.000	- 3.056	.002*	-86.575 55.495	0.135	96.901 38.463	1149.705 396.064	203.241 24.754	1.13 .762	3.034 3.960	H3(null) rejected
DJWSXXLS DJWMSXBH	256 71	236.52 80.04	1914.000	- 2.475	.013*	-45.840 166.730	0.208	-8.571 402.189	397.808 2509.232	24.863 297.791	.435 -1.087	3.639 3.354	H5(null) rejected
DJWMSXLS	71	62.96				- 109.120		154.998	2596.333	308.128	1.130	1.102	
DJWMASBH	33	40.80	303.500	- 3.091	.002*	502.190	0.38	327.770	1335.576	232.494	-1.192	5.175	H7(null) rejected
DJWMASLS	33	26.20				- 391.560		178.177	1369.768	238.446	1.223	2.557	
FTWMXXBH	92	99.66	3573.500	- 1.823	.068	67.500	0.134	36.928	350.527	36.545	.213	4.143	H1(null) cannot be rejected
FTWMXXLS FTWAXXBH	92 35	85.34 39.46	474.000	- 1.627	.104	-51.700 189.500	0.194	2.691 89.880	352.474 524.117	36.748 88.592	1.565 -1.778	4.095 4.943	H2(null) cannot be rejected
FTWAXXLS FTWSXXBH	35 280	31.54 308.45	31373.000	- 4.088	.000*	-69.400 31.400	0.173	76.554 11.648	526.289 209.165	88.959 12.500	1.558 817	2.494 3.363	H3(null) rejected
FTWSXXLS FTWMAXBH	280 31	252.55 35.03	371.000	- 1.542	.123	-48.950 232.700	0.196	-14.433 102.365	208.998 597.115	12.490 107.245	1.205 -1.289	3.527 2.021	H4(null) cannot be rejected
FTWMAXLS	31	27.97				- 188.600		10.365	606.023	108.845	1.077	.880	rejected
FTWMSXBH	72	77.85	2206.500	- 1.540	.123	99.700	0.128	47.186	385.138	45.389	267	2.603	H5(null) cannot be

													rejected
FTWMSXLS FTWASXBH	72 33	67.15 37.68	406.500	- 1.770	.077	-85.300 233.800	0.218	19.233 95.327	387.574 553.299	45.676 96.317	1.303 -1.569	2.131 3.218	H6(null) cannot be rejected
FTWASXLS FTWMASBH	33 41	29.32 48.35	559.500	- 2.606	.009*	-84.800 143.600	0.288	37.472 74.841	560.417 459.066	97.556 71.694	1.220 -1.656	1.532 3.822	H7(null) rejected
FTWMASLS	41	34.65		2.000		-		-65.876	460.474	71.914	1.420	3.495	rejected
HSMXXBH	69	70.68	2299.000	347	.729	129.300 283.200	0.03	216.719	2221.025	267.380	035	5.226	H1(null) cannot be
HSMXXLS HSWAXXBH	69 41	68.32 43.73	749.000	849	.396	100.400 467.510	0.094	398.187 364.521	2195.391 2040.131	264.294 318.615	1.577 755	4.244 .476	rejected H2(null) cannot be
HSWAXXLS	41	39.27				-		112.620	2066.935	322.801	141	046	rejected
HSWSXXBH	247	258.62	27757.000	- 1.732	.083	219.200 92.920	0.078	72.196	1174.348	74.722	474	6.892	H3(null) cannot be
HSWSXXLS	247	236.38				-		108.015	1171.582	74.546	1.057	6.441	rejected
HSWMAXBH	35	38.36	512.500	- 1.175	.240	109.000 874.950	0.14	425.013	2255.908	381.318	851	.000	H4(null) cannot be
HSWMAXLS	35	32.63				-53.590		-	2293.368	387.650	.032	658	rejected
HSWMSXBH	65	66.89	2022.000	421	.673	283.200	0.037	122.772 230.055	2248.709	278.918	037	5.287	H5(null) cannot be
HSWMSXLS HSWASXBH	65 37	64.11 39.57	608.000	827	.408	100.400 611.540	0.096	402.290 383.983	2223.925 1945.736	275.844 319.877	1.590 886	4.282 .561	rejected H6(null) cannot be rejected
HSWASXLS HSWMASBH	37 45	35.43 50.58	784.000	- 1.844	.065	158.010 562.200	0.194	224.232 385.686	1971.235 1981.785	324.069 295.427	.122 -1.615	266 3.897	H7(null) cannot be rejected
HSWMASLS	45	40.42				-		92.053	2017.653	300.774	1.192	2.114	rejected
NAWMXXBH	81	90.82	2525.500	- 2.529	.011*	175.530 30.420	0.199	29.612	297.045	33.005	-1.194	6.855	H1(null) rejected
NAWMXXLS NAWAXXBH	81 53	72.18 60.64	1026.000	- 2.392	.017*	-33.290 60.630	0.232	-9.563 40.116	298.377 412.025	33.153 56.596	1.427 1.362	6.435 10.896	H2(null) rejected
NAWAXXLS NAWSXXBH	53 250	46.36 268.96	26636.000	- 2.856	.004*	-40.380 15.825	0.128	7.294 9.655	413.947 160.897	56.860 10.176	2.284 -1.184	11.086 10.073	H3(null) rejected
NAWSXXLS NAWMAXBH	250 43	232.04 50.81	610.000	- 2.717	.007*	-15.395 89.130	0.293	4.234 49.446	161.134 402.266	10.191 61.345	1.664 507	9.550 2.311	, H4(null) rejected
NAWMAXLS	43	36.19				-89.130		- 120.846	386.489	58.939	293	1.982	
NAWMSXBH	71	80.28	1897.000	- 2.544	.011*	35.220	0.213	33.783	333.086	39.530	-2.008	11.320	H5(null) rejected
NAWMSXLS NAWASXBH	71 52	62.72 60.69	926.000	- 2.770	.006*	-47.770 71.870	0.272	-9.691 57.834	334.678 394.483	39.719 54.705	2.109 .200	10.520 4.903	H6(null) rejected
NAWASXLS NAWMASBH	52 49	44.31 57.40	813.500	- 2.750	.006*	-43.830 67.190	0.278	-65.166 43.005	393.315 457.009	54.543 65.287	894 859	4.448 7.269	H7(null) rejected
NAWMASLS NIWMXXBH	49 78	41.60 76.69	2900.500	502	.616	-67.190 -20.645	0.04	-74.250 - 115.080	452.900 1415.943	64.700 160.324	.902 .145	7.811 1.817	H1(null) cannot be rejected
NIWMXXLS	78	80.31				- 204.275		199.718	1406.378	159.241	1.144	1.130	,
NIWAXXBH	42	42.25	871.500	094	.925	29.445	0.01	- 197.113	2165.805	334.191	093	1.668	H2(null) cannot be rejected
NIWAXXLS	42	42.75				- 310.940		162.568	2168.741	334.644	1.035	1.354	igene

NIWSXXBH	253	258.27	30797.500	734	.463	-33.140	0.033	-30.141	848.822	53.365	196	2.325	H3(null) cannot be
NIWSXXLS	253	248.73				-		47.109	848.059	53.317	.832	2.174	rejected
NIWMSXBH	68	67.40	2237.000	326	.744	147.900 -20.645	0.028	- 132.003	1540.095	186.764	109	1.548	H5(null) cannot be
NIWMSXLS	68	69.60				- 204.275		264.985	1522.605	184.643	1.144	.814	rejected
NIWASXBH	40	41.00	780.000	192	.847	-1.105	0.021	- 206.970	2202.375	348.226	071	1.576	H6(null) cannot be rejected
NIWASXLS	40	40.00				- 306.500		103.688	2209.838	349.406	1.075	1.363	rejected
NIWMASBH	30	26.72	336.500	- 1.678	.093	- 343.500	0.217	- 293.469	2079.379	379.641	168	1.502	H7(null) cannot be rejected
NIWMASLS SPWMXXBH	30 93	34.28 105.08	3247.500	_	.003*	232.390 12.080	0.215	612.734 10.617	2006.122 81.171	366.266 8.417	.806 676	.714 4.913	, H1(null)
SPWMXXLS	93	81.92	32111000	2.934	1000	-12.080	0.210	-3.270	81.797	8.482	1.706	4.691	rejected
SPWAXXBH	40	47.35	526.000	- 2.637	.008*	33.165	0.295	24.826	117.036	18.505	-1.481	4.586	H2(null) rejected
SPWAXXLS SPWSXXBH	40 255	33.65 281.27	25942.000	- 3.949	.000*	-26.560 7.200	0.175	-2.961 4.042	119.667 47.411	18.921 2.969	1.192 900	3.063 2.956	H3(null) rejected
SPWSXXLS SPWMAXBH	255 32	229.73 37.38	356.000	- 2.095	.036	-7.790 38.290	0.262	-2.769 31.032	47.507 136.132	2.975 24.065	.690 -1.331	2.787 2.714	H4(null) cannot be rejected
SPWMAXLS SPWMSXBH	32 71	27.63 79.28	1968.000	- 2.254	.024*	-33.730 18.700	0.189	-6.565 13.907	139.572 89.772	24.673 10.654	.971 -1.074	1.428 4.126	H5(null) rejected
SPWMSXLS SPWASXBH	71 35	63.72 41.74	394.000	- 2.567	.010*	-12.250 44.490	0.307	1.692 20.345	90.842 127.243	10.781 21.508	1.476 -2.152	3.149 5.830	H6(null) rejected
SPWASXLS SPWMASBH	35 40	29.26 48.98	461.000	- 3.262	.001*	-32.020 40.140	0.365	2.178 17.617	128.888 136.661	21.786 21.608	1.773 -2.643	3.940 9.566	H7(null) rejected
SPWMASLS SSWMXXBH	40 72	32.03 72.82	2569.000	092	.927	-37.255 12.360	0.008	-13.358 19.487	137.154 533.071	21.686 62.823	2.602 -2.678	9.065 26.143	H1(null) cannot be rejected
SSWMXXLS SSWAXXBH	72 44	72.18 44.43	965.000	025	.980	-2.720 -12.535	0.003	96.859 34.359	524.441 607.168	61.806 91.534	4.277 2.314	24.119 18.705	H2(null) cannot be rejected
SSWAXXLS SSWSXXBH	44 214	44.57 219.73	21779.000	875	.382	-14.980 3.380	0.042	109.270 6.351	598.027 196.698	90.156 13.446	3.923 .080	17.331 3.241	H3(null) cannot be rejected
SSWSXXLS SSWMSXBH	214 62	209.27 62.20	1903.500	092	.926	-9.900 7.360	0.008	-6.004 20.994	196.713 588.118	13.447 74.691	300 -2.187	3.214 20.649	H5(null) cannot be
SSWMSXLS SSWASXBH	62 38	62.80 38.22	711.500	109	.913	-6.595 -39.945	0.013	101.434 38.839	579.543 657.083	73.602 106.593	3.490 2.107	18.932 15.690	rejected H6(null) cannot be
SSWASXLS SSWMASBH	38 30	38.78 28.72	396.500	791	.429	-10.505 -56.880	0.102	129.682 50.394	645.007 728.570	104.634 133.018	3.548 1.961	14.308 13.230	rejected H7(null) cannot be
SSWMASLS	30	32.28				22.545		223.629	694.047	126.715	3.322	11.884	rejected

169

Mann-Whitney Samples	n n	t Mean Rank	Mann- Whitney U	Z	Asymp. p (2- tailed)	Median (<i>Mdn</i>)	Effect size r	Mean (M)	Explore data Std. Deviation (SD)	Std. Error (SE)	Skewness	Kurtosis	Hypothesis
CAMSXXBH	56	57.89	1490.000	454	.650	83.535	0.004	27.264	442.009	59.066	422	.069	H3(null) cannot be rejected
CAMSXXLS	56	55.11				-74.955		55.519	439.308	58.705	.563	352	,
DAMSXXBH	66	72.52	1780.500	- 1.809	.070	138.025	0.014	82.023	671.890	82.704	.077	1.816	H3(null) cannot be rejected
DAMSXXLS	66	60.48				-138.025		22.483	676.578	83.281	1.110	1.650	,
DJMSXXBH	61	68.60	1427.50	- 2.217	.027*	226.190	0.018	162.517	780.845	99.977	-1.342	4.938	H3(null) rejected
DJMSXXLS	61	54.40				-155.120		-13.441	797.739	102.140	1.268	3.532	
FTMSXXBH	60	66.50	1440.000	- 1.890	.059	179.400	0.016	50.907	413.038	53.323	013	1.317	H3(null) cannot be rejected
FTMSXXLS	60	54.50				-127.150		-59.337	411.892	53.175	.932	1.899	,
HSMSXXBH	59	63.58	1499.500	- 1.297	.195	440.550	0.011	235.622	2275.217	296.208	055	3.207	H3(null) cannot be rejected
HSMSXXLS	59	55.42				-504.710		171.240	2281.070	296.970	1.490	2.672	,
NAMSXXBH	65	73.41	1596.500	- 2.403	.016*	43.020	0.018	37.663	305.713	37.919	977	5.825	H3(null) rejected
NAMSXXLS	65	57.56				-34.040		14.302	307.720	38.168	1.240	4.932	
NIMSXXBH	51	50.46	1247.500	355	.723	24.590	0.003	- 159.674	1860.164	260.475	611	2.537	H3(null) cannot be rejected
NIMSXXLS	51	52.54				-246.130		315.646	1839.732	257.614	1.408	1.839	-)
SPMSXXBH	63	70.75	1528.000	- 2.227	.026*	19.670	0.018	15.634	92.715	11.681	613	1.834	H3(null) rejected
SPMSXXLS	63	56.25				-22.530		-3.114	93.993	11.842	1.249	1.499	
SSMSXXBH	58	60.94	1540.500	781	.435	-14.775	0.007	14.240	500.867	65.767	-1.592	13.413	H3(null) cannot be rejected
SSMSXXLS	58	56.06				-50.590		6.707	501.026	65.788	2.012	13.087	,

Table 3 Mann-Whitney Test and Explore data (Monthly)

References

- Alexander, S. S. (1961). Price Movements in Speculative Markets: Trends or Random Walks, Industrial Management Review, Vol. 2, pp.7-26.
- Alexander, S.S. (1964). Price movements in speculative markets: Trends or random walks, Industrial Management Review Vol. 5, pp.25-46.
- Antoniou, A., Ergul, N., Holmes, P., and Priestley, R. (1997). Technical analysis, trading volume and market efficiency: evidence from an emerging market. Applied Financial Economics, Vol. 7, pp. 361-365.
- Arditti F. D. (1978). Can Analysts Distinguish Between Real and Randomly generated Stock Prices?, Financial Analysts Journal, Vol. 34-6, pp. 70.
- Armstrong J.S. (1980). The Seer-Sucker Theory: The Value of Experts in Forecasting, Technology Review, June/July, pp. 16-24.
- Ashby, W. R. (1963). Introduction to Cybernetics New York: John Wiley & Sons.
- Bachelier, L. (1900). Theorie de la Speculation Paris : Gauthier-Villars.
- Ball,R. (1978). Anomalies in Relationships between Securities Yields and Yield-Surrogates, Journal of Financial Economics, Vol. 6, pp.103-126.
- Basu, S. (1977). Investment Performance of Common Stocks in Relationship to their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis, Journal of Finance, Vol. 32, pp.663-682.
- Bernard, V. L. and H. N. Seyhun. (1995). Does Post-Earnings-Announcement Drift in Stock Prices Reflect a Market Inefficiency? A Stochastic Dominance Approach, Review of Quantitative Finance and Accounting, Vol.9 (1), pp.17-34.

- Bessembinder, H. & K. Chan (1995). The profitability of technical trading rules in the Asian stock market. Pacific-Basin Finance Journal, 3, 257-284.
- Black, Fischer, and Scholes, Myron S. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, Vol. 81, No. 3, pp. 637-654
- Blume, L. D., Easley, D., and O' Hara, M. (1994). Market statistics and technical analysis: the role of volume. Journal of Finance, Vol. 69, pp. 153-181.
- Bray, C. (2002). Program trading made up 35% of big board volume. Wall Street Journal, 3,C3.
- Brock, W., J. Lakonishok, and LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. Journal of Finance, 48(5), pp.1731-1764.
- Chan, K., Hameed, A., and Tong, W. (2000).Profitability of Momentum Strategies in the International Equity Market. Journal of Financial and Quantitative Analysis, Vol. 35, pp. 153-172.
- Cohen, J. & Cohen, P. (1983). Applied multiple regression/correlation analysis for thebehavioral sciences (2nd ed.). New York: Erlbaum.
- Coutts, J.A. and Cheng, K.C. (2000).Trading rules and stock returns: Some preliminary short-run evidence from the Hang Seng 1985-1997.Applied Financial Economics. 10, pp. 579-586.
- Cowles, A. (1933). Can Stock Market Forecasters Forecast? Econometrica, Vol. 1, pp. 309-324.
- DeBondt, W. F. M. and R. Thaler. (1985). Does the Stock Market Overreat?, Journal of Finance, Vol 40, pp.793-805.
- Eui Jung, C., Eduardo J. A. L. and Benjamin M.T. (2004). Testing for Predictability in Emerging Equity Markets, Emerging Markets Review, Vol. 5:3, pp. 295-316.
- Fama, E. (1965). The Behavior of Stock Market Prices, Journal of Business, Vol. 38 (1), pp.34-105.
- Fama, E. (1970). Efficient Capital Markets: A Review of Theory an Empirical Work. Journal of Finance, Vol 25, Issue 2, Papers and Proceedings of the Twenty-Eighth Annual Meeting of the American Finance Association New York, N.Y. pp. 383-417.
- Fama, E., L. Fisher, M. Jensen and R. Roll.(1969). The Adjustment of Stock Prices to New Information, International Economic Review, Vol. 10 (1), pp.1-21.
- Fama, E. & M. Blume (1966). Filter Tests and Stock Market Trading. Journal of Business, Vol. 39, pp. 226-241.
- French, K. (1980). Stock Returns and the Weekend Effect, Journal of Financial Economics, Vol. 8, pp.55-pp.69.
- Gency R. (1998). The Predictability of Security Returns with Simple Technical Trading Rules, Journal of Empirical Finance, Vol.5, pp.347-pp.349.
- George, T. J. and Hwang, C. Y. (2004). The 52-Week High and Momentum Investing, Journal of Finance, Vol. 59-5, pp.2145-2184.
- Granger, D. and O. Morgenstern. (1963) Spectral Analysis of New York Stock Market Prices, Kyklos, Vol. 16, pp. 1-27.
- Groth, J.C., Lewellen, W. G., Schlarbaum, G. G., and Lease, R. C. (1979). An Analysis of Brokerage House Securities Recommendations. Financial Analysis Journal, January/February, pp. 32-40
- Gultekin, M. and S. Gultekin. (1983) Stock Market Seasonality: International Evidence, Journal of Financial Economics, Vol. 12 (4), pp. 469-481.
- Hsu P.H. and Kuan C. M. (2005).Reexamining the Profitability of Technical Analysis with Data Snooping Checks, Journal of Financial Econometrics Vol. 3, no.4, pp. 606-628.
- Jaffe, J. (1974). Special Information and Insider Trading, Journal of Business, Vol. 47, pp.410-428.
- Jaffe, J. and R. Westerfield. (1985). The Weekend Effect in Common Stock Returns; The International Evidence, Journal of Finance, Vol. 40 (2), pp. 433-454.
- Jegadeesh N. (1990). Evidence of Predictable Behavior of Security Returns, Journal of Finance, Vol. 45, pp.881-898.
- Jegadeesh, N., and S. Titman. (1993) Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency, Journal of Finance, Vol. 48, pp.65-91.
- Keim, D. B. (1983) Size-related Anomalies and Stock Return Seasonality: Further Empirical Evidence, Journal of Financial Economics, Vol. 17, pp.357- 390.
- Kiymaz, H. (2002). The Stock Market Rumours and Stock Prices: A Test of Price Pressure and the Size Effect in an Emerging Market, Applied Financial Economics, Vol.12, pp.469-474.
- LeBaron, B. (1999). Technical Trading Rule Profitability and Foreign Exchange Intervention. Journal of International Economics, Vol. 49, pp. 125-143.
- Lehmann, B. (1990). Fads, Martingales and Market Efficiency, Quarterly Journal of Economics, Vol. 105, pp.1-28.
- Levy, R. A. (1967).Relative Strength as a Criterion for Investment Selection. Journal of Finance, Vol. 22 (4), pp. 595-610.

- Murphy, J.J. (2000). Technical Analysis of Financial Markets.New York Institute of Finance.
- Menkhoff, L. (1998). The noise trading approach-questionnaire evidence from foreign exchange, Journal of International Money and Finance, Vol. 17, pp.547-pp.564.
- Merton, R. (1980). On Estimating the Expected Return on the Market: An Exploratory Investigation. Journal of Financial Economics, Vol. 8 (4), pp.323-pp. 361.
- Neely, C., Weller, P., and Dittmar, R. (1997). Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach. Journal of Financial and Quantitative Analysis, Vol. 32, pp. 405-426.
- Niederhoffer V. and M. F. M. Osborne."Market Making and Reversal on the Stock Exchange." Journal of the American Statistical Association, Vol. 61, pp. 897-916.
- Osborne, M. (1959).Brownian motion in the Stock Market, Operations Research.Vol. 7, pp.145-173.
- Osler C. L. (1998). Identifying Noise Traders: The Head and Shoulders Pattern in U. S. Equities, Staff Reports, Federal Reserve Bank of New York, Vol. 42, pp.39.
- Post, G. T. and P. van Vliet.(2004). Downside Risk and Asset Pricing, ERIM working paper.
- Pring, M. J. (1991). Technical Analysis Explained: The Successful Investor's Guide to Spotting Investment Trends and Turning Points. Mc-Graw Hill, 3 rd edition.
- Ratner, M. & Leal, R. P. C. (1999). Tests of technical trading strategies in the emerging equity markets of Latin America and Asia. Journal of Banking & Finance, Vol. 23, pp. 1887-1905.
- Roberts, H. (1959). Stock Market "Patterns" and Financial Analysis: Methodological Suggestions. Journal of Finance, Vol. 44, pp.1-10.
- Seeking α (2008) World Equity Market Declines: -\$25.9 trillion. [Online] Available from http://seekingalpha.com/article/99256-world-equity-market-declines-25-9-trillion. [Accessed: 2013-12-28]
- Seyhun, N. (1986). Insiders Profits, Costs of Trading and Market Efficiency, Journal of Financial Economics, Vol. 16, pp.189-212.
- Siegel, J.J. (1998). Stocks for the Long Run, 2nd ed. New York: McGraw-Hill.
- Taleb, Nassim (2007). The Black Swan. The Impact of the Highly Improbable. Random House.
- Talor, M.P., Allen, H. (1992). The use of technical analysis in the foreign exchange market, Journal of International Money and Finance, Vol. 11, pp. 304-314.
- Theil, H., Leenders, C. T. (1965). Tomorrow on the Amsterdam Stock Exchange, Journal of Business, Vol.38, pp.277-284.